Jade Dungeon

/* 6502微处理器是FC(Family Computer 俗称任天堂红白机)使用的微处理器,本文详细 的讲解了6502处理器的寄存器组织,寻址方式和指令集。原文是英文,RockCarry做了翻 译,在指令集部分,RockCarry觉得翻译实在是没有太多的必要,所以保留了原文。

注意:符号&在原文中为$,表示的是一个十六进制数。 */

6502微处理器

以下的多数信息都在“Commodore 64 Programmers Reference Manual”中简单提到,因为 它在电气形式上是有用的,并且这篇文档和6502的文档之间没有什么差别,毕竟他们都是出 自6500家族的。我在必要的地方作了修改并加入了一些新内容。

从理论上讲,你可以使用你能找到的任何代码来模拟6510(C64处理器)。

6502处理器内部的寄存器

几乎所有的运算都在处理器中进行。寄存器是处理器内部的一些特殊的存储器,它们被用来 计算或保存计算结果。6502处理器拥有以下的一些寄存器:

累加器

累加器是微处理器内部最重要的寄存器。人们设计了大量的机器指令来执行将内存数据传 送到累加器,将累加器中的数据传送到内存,修改累加器的内容,或其他一些直接对累加器 (不会影响内存)的操作。并且累加器也是唯一的能够执行算术指令的寄存器。

X变址寄存器

X变址寄存器是一个非常有用的寄存器。人们设计的传送指令中,几乎所有的都可以用于累 加器,但是仍然有一些指令只能被用于X变址寄存器(它们是为X变址寄存器专门设计的)。 同样,人们也设计了大量的机器,允许你将内存数据传送到X变址寄存器,将X变址寄存器的 数据传送到内存,修改X变址寄存器的内容,或者执行其他一些对X变址寄存器的直接操作。

Y变址寄存器

Y变址寄存器也是一个非常重要的寄存器。尽管几乎所有的传送指令都是为累加器和X变址 寄存器设计的,但是仍有一些指令只能用于Y变址寄存器(它们是为Y变址寄存器专门设计的 )。人们也设计了大量的机器指令,允许你将内存数据传送到X变址寄存器,将Y变址寄存器 的数据传送到内存,修改Y变址寄存器的内容,或者执行其他一些对Y变址寄存器的直接操作。

状态寄存器

状态寄存器包含了8个标志位(标志位=标志某件事发生或没有发生的东西)。这个寄存器 各个位会根据算术和逻辑运算的结果而被改变。各个位的意义描述如下:

Bit No. 7 6 5 4 3 2 1 0 S V B D I Z C

Bit 0 - C - 进位标志位:这个位保存了大多数算术运算所产生的有意义的进位。做减法 运算时,该标志位被清零——当需要借位时,被置1——当没有借位时。进位标志位同样也被 用于移位和循环移位操作。

Bit 1 - Z - 零标志位:这个标志位在算术或逻辑运算操作结果产生零时被置为1,当结 果不为零时被置为0。

Bit 2 - I - 中断标志位:该标志位是中断允许/禁止标志位。如果被置为1,中断禁止, 如果被清为零,中断允许。

Bit 3 - D - 十进制模式标志位:被置为1时,并且带进位加法或减法指令被执行时,操 作数被当作十进制BCD(Binary Coded Decimal, eg. 0x00-0x99 = 0-99)码,运算结果同样 也是一个BCD码。

Bit 4 - B: 该标志位被置为1,当一个软件中断(BRK指令)被执行。

Bit 5: 未被使用,总是假定为逻辑1。

Bit 6 - V - 溢出标志位:当算术运算操作产生的结果太大不能用一个字节表示时,V标 志位被置为1。

Bit 7 - S - 符号标志位:当操作结果是一个负数时被置位1,为正数被清为零。

其中最常用的标志位是C,Z,V,S。

程序计数器(PC)

程序计数器始终保存了当前正在被执行的机器指令的地址。由于在Commodore VIC-20

计算机上(或者说在所有的计算机上),操作系统都始终在运行着,所以程序计数器(PC)也 始终在改变着。除非通过某种手段使微处理器停机,这种改变才会停止下来。

堆栈指针(THE STACK POINTER)

这个寄存器保存了堆栈的栈顶的位置。堆栈是计算机的机器语言指令用来保存临时数据

的。

寻址方式(ADDRESSING MODES)

指令的执行需要操作数的参与。有多钟的方式可以指示处理器到哪儿去取得所需要的操作 数。这些不同的方式在计算机中被称为寻址方式。6502处理器提供了11种寻址方式,描述如 下:

1) 立即数寻址方式(Immediate) 这种方式下操作数的值直接在机器指令中给出。在汇编语言中,通过在操作数前面加"#" 来指明使用这种寻址方式。 例如,LDA #&0A - 意思是“向雷加齐装入十六进制数&0A”。在机 器语言里面,不同的寻址方式,是使用不同的代码来指明的。所以,LDA将会被汇编成不同的 机器代码,这取决于使用的寻址方式。在这个例子中,它将被汇编为:&A9 &0A 。

2 & 3) 绝对寻址与零页面绝对寻址(Absolute and Zero-page Absolute) 在这种寻址方式中,操作数的地址被给出。 例. LDA &31F6 - (汇编语言)

&AD &31F6 - (机器代码)

如果操作数的地址在零页面上,所有这样的地址的高字节都是00,这就是说只需要一个字 节(地址的低字节)即可,处理器会自动识别这样的地址,并且在高字节填充00。 例. LDA &F4

&A5 &F4

注意:不同的寻址方式汇编后得到不同的机器代码。 注意:对于2字节的地址,低字节被首先存放,例如: LDA &31F6 将以3字节在内存中存放,&AD &F6 &31 。 零页面绝对寻址也通常被称为零页面寻址。

4) 隐含的寻址方式(Implied) 在这种寻址方式下,操作数的地址没有被直接给出。他们被隐含在指令中。 例. TAX - (传送累加器的内容到X变址寄存器)

&AA - (机器代码)

5) 累加器寻址(Accumulator) 在这种寻址方式下,指令的作用对象是累加器中的数据,所以不需要直接给出操作数。 例. LSR - 逻辑右移

&4A - (机器代码)

6 & 7)变址寻址和零页面变址寻址 (Indexed and Zero-page Indexed) 在这种寻址方式下,操作数的实际地址是由指令中给出的地址加上X变址寄存器或Y变址寄存 器的值来形成。 例. LDA &31F6, Y

&D9 &31F6 LDA &31F6, X &DD &31F6

注意:具体使用的是哪个变址寄存器是由所使用的指令操作来决定的。在零页面的变址寻址 中X变址寄存器和Y变址寄存器不可混用,许多能使用零页面变址寻址的指令只能使用X变址寄 存器。 例. LDA &20, X

&B5 &20

8) 间接寻址(Indirect) 这种寻址方式只能用于JMP指令-跳转到一个新的位置。在汇编语言里是通过在操作数两边 加括号来指明的。操作数就是保存有新位置的内存单元的地址。 例. JMP (&215F) 假定 - byte value

&215F &76 &2160 &30

这条指令从&2154,&2160内存单元取得值&3076,然后把它们当作跳转到的地址,也就是说跳 转到&3076单元去。(记住地址是低字节先被存储)

9) 预变址间接寻址(Pre-indexed indirect) 在这种寻址方式下,一个零页面的地址被加到X变址寄存器上形成实际操作数在内存中的地 址。在汇编语言中只用括号来指明使用的时间界寻址。 例. LDA (&3E, X)

&A1 &3E

假定 - byte value

X-reg &05 &0043 &15 &0044 &24 &2415 &6E

这条指令将被如下的执行: (i) &3E+X寄存器的内容=&3E+&05=&0043 (ii) 获取&0043,&0044两个字节单元中保存的地址=&2415 (iii) 获取&2415中的内容 - 也就是&6E,送入累加器。

注意 a) 当把一个零页面地址和X寄存器相加时,地址回绕将会被使用 - 也就是说相加所得

的和也是一个零页面的地址。例如:FF+2=0001,而不是你所期望的0101。千万不 要忘了这一点当你模拟这种寻址方式的时候。 b) 这种寻址方式只能使用X变址寄存器。

10) 后变址间接寻址(Post-indexed indirect) 在这种寻址方式下,一个零页面的地址的内容(是一个双字节的内容)给出了一个间接地 址,这个地址再加上Y寄存器的内容形成了操作数的真实地址。同样,在汇编语言里面,这种 寻址方式也是由括号来指明。 例. LDA (&4C), Y 注意括号只括起来了指令中的第二部分,因为它是做间址操作的那一部分。 假定 - byte value

&004C &00 &004D &21 Y-reg. &05 &2105 &6D

那么这条指令将会如下的执行: (i) 从&4C,&4D单元取得地址,即&2100 (ii) 将这个地址和Y寄存器的内容相加 = &2105 (111) 将地址&2105处的内容送入累加器 - 也就是说将&6D送入累加器 注意: 在这种寻址方式下只能使用Y寄存器。

11) 关联寻址(Relative) 这种寻址方式被使用在条件分支转移指令中。这也可能会是你使用得最多得寻址方式了。一 个一字节得值被加到程序计数器(PC)上去,然后程序接着从这个地址往下运行。这个一字节 的数被认为是一个有符号数 - 也就是说,如果7号位是1,那么0-6号位所给出的数是一个负 数;如果7号位是0,那么这个数是一个正数。这样可以使转移指令在前后两个方向最大跳转127 个字节。 例 位号. 7 6 5 4 3 2 1 0 有符号值 无符号值

值 1 0 1 0 0 1 1 1 -39 &A7 值 0 0 1 0 0 1 1 1 +39 &27

指令范例:

BEQ &A7 &F0 &A7

这个指令将检查零标志位,如果被置位,那么十进制数39将从程序计数器中减去,然后程序 接着从那儿往下执行。如果零标志位未被置位,那么程序就直接往下执行。 说明: a) 在转移指令后,分支转移之前,程序计数器指向了转移指令的开始位置。在计算

转移位置的时候,一定要把这个计算进去。 b) 条件分支转移指令通过检查状态寄存器中的相关位来工作。当你在做转移的时候, 请确保这些标志位被正确的置位或复位,这通常是通过使用CMP指令来实现的。 c) 当你需要跳转得比127个字节更远时,你可以使用反向得跳转指令和JMP指令的组 合来实现。

+------------------------------------------------------------------------ | | MCS6502 微处理器指令集 - 按字母顺序排列 | +------------------------------------------------------------------------ | | ADC Add Memory to Accumulator with Carry | AND "AND" Memory with Accumulator | ASL Shift Left One Bit (Memory or Accumulator) | | BCC Branch on Carry Clear | BCS Branch on Carry Set | BEQ Branch on Result Zero | BIT Test Bits in Memory with Accumulator | BMI Branch on Result Minus | BNE Branch on Result not Zero | BPL Branch on Result Plus | BRK Force Break | BVC Branch on Overflow Clear | BVS Branch on Overflow Set | | CLC Clear Carry Flag | CLD Clear Decimal Mode | CLI Clear interrupt Disable Bit | CLV Clear Overflow Flag | CMP Compare Memory and Accumulator | CPX Compare Memory and Index X | CPY Compare Memory and Index Y | | DEC Decrement Memory by One | DEX Decrement Index X by One | DEY Decrement Index Y by One | | EOR "Exclusive-Or" Memory with Accumulator | | INC Increment Memory by One | INX Increment Index X by One | INY Increment Index Y by One | | JMP Jump to New Location | +------------------------------------------------------------------------

------------------------------------------------------------------------+

| MCS6502 MICROPROCESSOR INSTRUCTION SET - ALPHABETIC SEQUENCE | |

------------------------------------------------------------------------+

| JSR Jump to New Location Saving Return Address | | LDA Load Accumulator with Memory | LDX Load Index X with Memory | LDY Load Index Y with Memory | LSR Shift Right One Bit (Memory or Accumulator) | | NOP No Operation | | ORA "OR" Memory with Accumulator | | PHA Push Accumulator on Stack | PHP Push Processor Status on Stack | PLA Pull Accumulator from Stack | PLP Pull Processor Status from Stack | | ROL Rotate One Bit Left (Memory or Accumulator) | ROR Rotate One Bit Right (Memory or Accumulator) | RTI Return from Interrupt | RTS Return from Subroutine | | SBC Subtract Memory from Accumulator with Borrow | SEC Set Carry Flag | SED Set Decimal Mode | SEI Set Interrupt Disable Status | STA Store Accumulator in Memory | STX Store Index X in Memory | STY Store Index Y in Memory | | TAX Transfer Accumulator to Index X | TAY Transfer Accumulator to Index Y | TSX Transfer Stack Pointer to Index X | TXA Transfer Index X to Accumulator | TXS Transfer Index X to Stack Pointer | TYA Transfer Index Y to Accumulator |

------------------------------------------------------------------------+

The following notation applies to this summary:
A Accumulator EOR Logical Exclusive Or
X, Y Index Registers fromS Transfer from Stack
M Memory toS Transfer to Stack
P Processor Status Register -> Transfer to
S Stack Pointer <- Transfer from
/ Change V Logical OR
_ No Change PC Program Counter
+ Add PCH Program Counter High
// Logical AND PCL Program Counter Low
  • Subtract OPER OPERAND
  1. IMMEDIATE ADDRESSING MODE

Note: At the top of each table is located in parentheses a reference

number (Ref: XX) which directs the user to that Section in the MCS6500 Microcomputer Family Programming Manual in which the instruction is defined and discussed.

ADC Add memory to accumulator with carry ADC

Operation: A + M + C -> A, C N Z C I D V

/ / / _ _ / (Ref: 2.2.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate ADC #Oper 69 2 2
Zero Page ADC Oper 65 2 3
Zero Page,X ADC Oper,X 75 2 4
Absolute ADC Oper 60 3 4
Absolute,X ADC Oper,X 70 3 4*
Absolute,Y ADC Oper,Y 79 3 4*
(Indirect,X) ADC (Oper,X) 61 2 6
(Indirect),Y ADC (Oper),Y 71 2 5*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if page boundary is crossed.

AND "AND" memory with accumulator AND

Operation: A // M -> A N Z C I D V

/ / _ _ _ _ (Ref: 2.2.3.0)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate AND #Oper 29 2 2
Zero Page AND Oper 25 2 3
Zero Page,X AND Oper,X 35 2 4
Absolute AND Oper 2D 3 4
Absolute,X AND Oper,X 3D 3 4*
Absolute,Y AND Oper,Y 39 3 4*
(Indirect,X) AND (Oper,X) 21 2 6
(Indirect,Y) AND (Oper),Y 31 2 5
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if page boundary is crossed.

ASL ASL Shift Left One Bit (Memory or Accumulator) ASL

+-+-+-+-+-+-+-+-+

Operation: C <- |7|6|5|4|3|2|1|0| <- 0

+-+-+-+-+-+-+-+-+ N Z C I D V / / / _ _ _ (Ref: 10.2)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Accumulator ASL A 0A 1 2
Zero Page ASL Oper 06 2 5
Zero Page,X ASL Oper,X 16 2 6
Absolute ASL Oper 0E 3 6
Absolute, X ASL Oper,X 1E 3 7
+----------------+-----------------------+---------+---------+----------+

BCC BCC Branch on Carry Clear BCC

N Z C I D V

Operation: Branch on C = 0 _ _ _ _ _ _

(Ref: 4.1.1.3)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Relative BCC Oper 90 2 2*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if branch occurs to same page.
  • Add 2 if branch occurs to different page.

BCS BCS Branch on carry set BCS

Operation: Branch on C = 1 N Z C I D V

_ _ _ _ _ _ (Ref: 4.1.1.4)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Relative BCS Oper B0 2 2*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if branch occurs to same page.
  • Add 2 if branch occurs to next page.

BEQ BEQ Branch on result zero BEQ

N Z C I D V

Operation: Branch on Z = 1 _ _ _ _ _ _

(Ref: 4.1.1.5)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Relative BEQ Oper F0 2 2*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if branch occurs to same page.
  • Add 2 if branch occurs to next page.

BIT BIT Test bits in memory with accumulator BIT

Operation: A // M, M7 -> N, M6 -> V

Bit 6 and 7 are transferred to the status register. N Z C I D V If the result of A // M is zero then Z = 1, otherwise M7/ _ _ _ M6 Z = 0

(Ref: 4.2.1.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Zero Page BIT Oper 24 2 3
Absolute BIT Oper 2C 3 4
+----------------+-----------------------+---------+---------+----------+

BMI BMI Branch on result minus BMI

Operation: Branch on N = 1 N Z C I D V

_ _ _ _ _ _ (Ref: 4.1.1.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Relative BMI Oper 30 2 2*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if branch occurs to same page.
  • Add 1 if branch occurs to different page.

BNE BNE Branch on result not zero BNE

Operation: Branch on Z = 0 N Z C I D V

_ _ _ _ _ _ (Ref: 4.1.1.6)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Relative BMI Oper D0 2 2*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if branch occurs to same page.
  • Add 2 if branch occurs to different page.

BPL BPL Branch on result plus BPL

Operation: Branch on N = 0 N Z C I D V

_ _ _ _ _ _ (Ref: 4.1.1.2)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Relative BPL Oper 10 2 2*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if branch occurs to same page.
  • Add 2 if branch occurs to different page.

BRK BRK Force Break BRK

Operation: Forced Interrupt PC + 2 toS P toS N Z C I D V

_ _ _ 1 _ _ (Ref: 9.11)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied BRK 00 1 7
+----------------+-----------------------+---------+---------+----------+ 1. A BRK command cannot be masked by setting I.

BVC BVC Branch on overflow clear BVC

Operation: Branch on V = 0 N Z C I D V

_ _ _ _ _ _ (Ref: 4.1.1.8)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Relative BVC Oper 50 2 2*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if branch occurs to same page.
  • Add 2 if branch occurs to different page.

BVS BVS Branch on overflow set BVS

Operation: Branch on V = 1 N Z C I D V

_ _ _ _ _ _ (Ref: 4.1.1.7)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Relative BVS Oper 70 2 2*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if branch occurs to same page.
  • Add 2 if branch occurs to different page.

CLC CLC Clear carry flag CLC

Operation: 0 -> C N Z C I D V

_ _ 0 _ _ _ (Ref: 3.0.2)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied CLC 18 1 2
+----------------+-----------------------+---------+---------+----------+

CLD CLD Clear decimal mode CLD

Operation: 0 -> D N A C I D V

_ _ _ _ 0 _ (Ref: 3.3.2)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied CLD D8 1 2
+----------------+-----------------------+---------+---------+----------+

CLI CLI Clear interrupt disable bit CLI

Operation: 0 -> I N Z C I D V

_ _ _ 0 _ _ (Ref: 3.2.2)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied CLI 58 1 2
+----------------+-----------------------+---------+---------+----------+

CLV CLV Clear overflow flag CLV

Operation: 0 -> V N Z C I D V

_ _ _ _ _ 0 (Ref: 3.6.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied CLV B8 1 2
+----------------+-----------------------+---------+---------+----------+

CMP CMP Compare memory and accumulator CMP

Operation: A - M N Z C I D V

/ / / _ _ _ (Ref: 4.2.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate CMP #Oper C9 2 2
Zero Page CMP Oper C5 2 3
Zero Page,X CMP Oper,X D5 2 4
Absolute CMP Oper CD 3 4
Absolute,X CMP Oper,X DD 3 4*
Absolute,Y CMP Oper,Y D9 3 4*
(Indirect,X) CMP (Oper,X) C1 2 6
(Indirect),Y CMP (Oper),Y D1 2 5*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if page boundary is crossed.

CPX CPX Compare Memory and Index X CPX

N Z C I D V

Operation: X - M / / / _ _ _

(Ref: 7.8)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate CPX *Oper E0 2 2
Zero Page CPX Oper E4 2 3
Absolute CPX Oper EC 3 4
+----------------+-----------------------+---------+---------+----------+

CPY CPY Compare memory and index Y CPY

N Z C I D V

Operation: Y - M / / / _ _ _

(Ref: 7.9)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate CPY *Oper C0 2 2
Zero Page CPY Oper C4 2 3
Absolute CPY Oper CC 3 4
+----------------+-----------------------+---------+---------+----------+

DEC DEC Decrement memory by one DEC

Operation: M - 1 -> M N Z C I D V

/ / _ _ _ _ (Ref: 10.7)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Zero Page DEC Oper C6 2 5
Zero Page,X DEC Oper,X D6 2 6
Absolute DEC Oper CE 3 6
Absolute,X DEC Oper,X DE 3 7
+----------------+-----------------------+---------+---------+----------+

DEX DEX Decrement index X by one DEX

Operation: X - 1 -> X N Z C I D V

/ / _ _ _ _ (Ref: 7.6)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied DEX CA 1 2
+----------------+-----------------------+---------+---------+----------+

DEY DEY Decrement index Y by one DEY

Operation: X - 1 -> Y N Z C I D V

/ / _ _ _ _ (Ref: 7.7)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied DEY 88 1 2
+----------------+-----------------------+---------+---------+----------+

EOR EOR "Exclusive-Or" memory with accumulator EOR

Operation: A EOR M -> A N Z C I D V

/ / _ _ _ _ (Ref: 2.2.3.2)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate EOR #Oper 49 2 2
Zero Page EOR Oper 45 2 3
Zero Page,X EOR Oper,X 55 2 4
Absolute EOR Oper 40 3 4
Absolute,X EOR Oper,X 50 3 4*
Absolute,Y EOR Oper,Y 59 3 4*
(Indirect,X) EOR (Oper,X) 41 2 6
(Indirect),Y EOR (Oper),Y 51 2 5*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if page boundary is crossed.

INC INC Increment memory by one INC

N Z C I D V

Operation: M + 1 -> M / / _ _ _ _

(Ref: 10.6)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Zero Page INC Oper E6 2 5
Zero Page,X INC Oper,X F6 2 6
Absolute INC Oper EE 3 6
Absolute,X INC Oper,X FE 3 7
+----------------+-----------------------+---------+---------+----------+

INX INX Increment Index X by one INX

N Z C I D V

Operation: X + 1 -> X / / _ _ _ _

(Ref: 7.4)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied INX E8 1 2
+----------------+-----------------------+---------+---------+----------+

INY INY Increment Index Y by one INY

Operation: X + 1 -> X N Z C I D V

/ / _ _ _ _ (Ref: 7.5)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied INY C8 1 2
+----------------+-----------------------+---------+---------+----------+

JMP JMP Jump to new location JMP

Operation: (PC + 1) -> PCL N Z C I D V

(PC + 2) -> PCH (Ref: 4.0.2) _ _ _ _ _ _ (Ref: 9.8.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Absolute JMP Oper 4C 3 3
Indirect JMP (Oper) 6C 3 5
+----------------+-----------------------+---------+---------+----------+

JSR JSR Jump to new location saving return address JSR

Operation: PC + 2 toS, (PC + 1) -> PCL N Z C I D V

(PC + 2) -> PCH _ _ _ _ _ _ (Ref: 8.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Absolute JSR Oper 20 3 6
+----------------+-----------------------+---------+---------+----------+

LDA LDA Load accumulator with memory LDA

Operation: M -> A N Z C I D V

/ / _ _ _ _ (Ref: 2.1.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate LDA #Oper A9 2 2
Zero Page LDA Oper A5 2 3
Zero Page,X LDA Oper,X B5 2 4
Absolute LDA Oper AD 3 4
Absolute,X LDA Oper,X BD 3 4*
Absolute,Y LDA Oper,Y B9 3 4*
(Indirect,X) LDA (Oper,X) A1 2 6
(Indirect),Y LDA (Oper),Y B1 2 5*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 if page boundary is crossed.

LDX LDX Load index X with memory LDX

Operation: M -> X N Z C I D V

/ / _ _ _ _ (Ref: 7.0)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate LDX #Oper A2 2 2
Zero Page LDX Oper A6 2 3
Zero Page,Y LDX Oper,Y B6 2 4
Absolute LDX Oper AE 3 4
Absolute,Y LDX Oper,Y BE 3 4*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 when page boundary is crossed.

LDY LDY Load index Y with memory LDY

N Z C I D V

Operation: M -> Y / / _ _ _ _

(Ref: 7.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate LDY #Oper A0 2 2
Zero Page LDY Oper A4 2 3
Zero Page,X LDY Oper,X B4 2 4
Absolute LDY Oper AC 3 4
Absolute,X LDY Oper,X BC 3 4*
+----------------+-----------------------+---------+---------+----------+

  • Add 1 when page boundary is crossed.

LSR LSR Shift right one bit (memory or accumulator) LSR

+-+-+-+-+-+-+-+-+

Operation: 0 -> |7|6|5|4|3|2|1|0| -> C N Z C I D V

+-+-+-+-+-+-+-+-+ 0 / / _ _ _ (Ref: 10.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Accumulator LSR A 4A 1 2
Zero Page LSR Oper 46 2 5
Zero Page,X LSR Oper,X 56 2 6
Absolute LSR Oper 4E 3 6
Absolute,X LSR Oper,X 5E 3 7
+----------------+-----------------------+---------+---------+----------+

NOP NOP No operation NOP

N Z C I D V

Operation: No Operation (2 cycles) _ _ _ _ _ _

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied NOP EA 1 2
+----------------+-----------------------+---------+---------+----------+

ORA ORA "OR" memory with accumulator ORA

Operation: A V M -> A N Z C I D V

/ / _ _ _ _ (Ref: 2.2.3.1)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Immediate ORA #Oper 09 2 2
Zero Page ORA Oper 05 2 3
Zero Page,X ORA Oper,X 15 2 4
Absolute ORA Oper 0D 3 4
Absolute,X ORA Oper,X 10 3 4*
Absolute,Y ORA Oper,Y 19 3 4*
(Indirect,X) ORA (Oper,X) 01 2 6
(Indirect),Y ORA (Oper),Y 11 2 5
+----------------+-----------------------+---------+---------+----------+

  • Add 1 on page crossing

PHA PHA Push accumulator on stack PHA

Operation: A toS N Z C I D V

_ _ _ _ _ _ (Ref: 8.5)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied PHA 48 1 3
+----------------+-----------------------+---------+---------+----------+

PHP PHP Push processor status on stack PHP

Operation: P toS N Z C I D V

_ _ _ _ _ _ (Ref: 8.11)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied PHP 08 1 3
+----------------+-----------------------+---------+---------+----------+

PLA PLA Pull accumulator from stack PLA

Operation: A fromS N Z C I D V

_ _ _ _ _ _ (Ref: 8.6)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied PLA 68 1 4
+----------------+-----------------------+---------+---------+----------+

PLP PLP Pull processor status from stack PLA

Operation: P fromS N Z C I D V

From Stack (Ref: 8.12)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied PLP 28 1 4
+----------------+-----------------------+---------+---------+----------+

ROL ROL Rotate one bit left (memory or accumulator) ROL

+------------------------------+
M or A
+-+-+-+-+-+-+-+-+ +-+

Operation: +-< |7|6|5|4|3|2|1|0| <- |C| <-+ N Z C I D V

+-+-+-+-+-+-+-+-+ +-+ / / / _ _ _ (Ref: 10.3)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Accumulator ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero Page,X ROL Oper,X 36 2 6
Absolute ROL Oper 2E 3 6
Absolute,X ROL Oper,X 3E 3 7
+----------------+-----------------------+---------+---------+----------+

ROR ROR Rotate one bit right (memory or accumulator) ROR

+------------------------------+
 
+-+ +-+-+-+-+-+-+-+-+

Operation: +-> |C| -> |7|6|5|4|3|2|1|0| >-+ N Z C I D V

+-+ +-+-+-+-+-+-+-+-+ / / / _ _ _ (Ref: 10.4)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Accumulator ROR A 6A 1 2
Zero Page ROR Oper 66 2 5
Zero Page,X ROR Oper,X 76 2 6
Absolute ROR Oper 6E 3 6
Absolute,X ROR Oper,X 7E 3 7
+----------------+-----------------------+---------+---------+----------+

Note: ROR instruction is available on MCS650X microprocessors after June, 1976.

RTI RTI Return from interrupt RTI

N Z C I D V

Operation: P fromS PC fromS From Stack

(Ref: 9.6)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied RTI 4D 1 6
+----------------+-----------------------+---------+---------+----------+

RTS RTS Return from subroutine RTS

N Z C I D V

Operation: PC fromS, PC + 1 -> PC _ _ _ _ _ _

(Ref: 8.2)

+----------------+-----------------------+---------+---------+----------+

Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
+----------------+-----------------------+---------+---------+----------+
Implied RTS 60 1 6
+----------------+-----------------------+---------+---------+----------+

SBC SBC Subtract memory from accumulator with borrow SBC

-

Operation: A - M - C -> A N Z C I D V

  • / / / _ _ / Note:C = Borrow (Ref: 2.2.2) +----------------+-----------------------+---------+---------+----------+ | Addressing Mode| Assembly Language Form| OP CODE |No. Bytes|No. Cycles| +----------------+-----------------------+---------+---------+----------+ | Immediate | SBC #Oper | E9 | 2 | 2 | | Zero Page | SBC Oper | E5 | 2 | 3 | | Zero Page,X | SBC Oper,X | F5 | 2 | 4 | | Absolute | SBC Oper | ED | 3 | 4 | | Absolute,X | SBC Oper,X | FD | 3 | 4* | | Absolute,Y | SBC Oper,Y | F9 | 3 | 4* | | (Indirect,X) | SBC (Oper,X) | E1 | 2 | 6 | | (Indirect),Y | SBC (Oper),Y | F1 | 2 | 5 | +----------------+-----------------------+---------+---------+----------+
  • Add 1 when page boundary is crossed.

    SEC SEC Set carry flag SEC

    Operation: 1 -> C N Z C I D V

    _ _ 1 _ _ _ (Ref: 3.0.1)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied SEC 38 1 2
    +----------------+-----------------------+---------+---------+----------+

    SED SED Set decimal mode SED

    N Z C I D V

    Operation: 1 -> D _ _ _ _ 1 _

    (Ref: 3.3.1)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied SED F8 1 2
    +----------------+-----------------------+---------+---------+----------+

    SEI SEI Set interrupt disable status SED

    N Z C I D V

    Operation: 1 -> I _ _ _ 1 _ _

    (Ref: 3.2.1)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied SEI 78 1 2
    +----------------+-----------------------+---------+---------+----------+

    STA STA Store accumulator in memory STA

    Operation: A -> M N Z C I D V

    _ _ _ _ _ _ (Ref: 2.1.2)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Zero Page STA Oper 85 2 3
    Zero Page,X STA Oper,X 95 2 4
    Absolute STA Oper 80 3 4
    Absolute,X STA Oper,X 90 3 5
    Absolute,Y STA Oper, Y 99 3 5
    (Indirect,X) STA (Oper,X) 81 2 6
    (Indirect),Y STA (Oper),Y 91 2 6
    +----------------+-----------------------+---------+---------+----------+

    STX STX Store index X in memory STX

    Operation: X -> M N Z C I D V

    _ _ _ _ _ _ (Ref: 7.2)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Zero Page STX Oper 86 2 3
    Zero Page,Y STX Oper,Y 96 2 4
    Absolute STX Oper 8E 3 4
    +----------------+-----------------------+---------+---------+----------+

    STY STY Store index Y in memory STY

    Operation: Y -> M N Z C I D V

    _ _ _ _ _ _ (Ref: 7.3)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Zero Page STY Oper 84 2 3
    Zero Page,X STY Oper,X 94 2 4
    Absolute STY Oper 8C 3 4
    +----------------+-----------------------+---------+---------+----------+

    TAX TAX Transfer accumulator to index X TAX

    Operation: A -> X N Z C I D V

    / / _ _ _ _ (Ref: 7.11)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied TAX AA 1 2
    +----------------+-----------------------+---------+---------+----------+

    TAY TAY Transfer accumulator to index Y TAY

    Operation: A -> Y N Z C I D V

    / / _ _ _ _ (Ref: 7.13)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied TAY A8 1 2
    +----------------+-----------------------+---------+---------+----------+

    TSX TSX Transfer stack pointer to index X TSX

    Operation: S -> X N Z C I D V

    / / _ _ _ _ (Ref: 8.9)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied TSX BA 1 2
    +----------------+-----------------------+---------+---------+----------+

    TXA TXA Transfer index X to accumulator TXA

    N Z C I D V

    Operation: X -> A / / _ _ _ _

    (Ref: 7.12)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied TXA 8A 1 2
    +----------------+-----------------------+---------+---------+----------+

    TXS TXS Transfer index X to stack pointer TXS

    N Z C I D V

    Operation: X -> S _ _ _ _ _ _

    (Ref: 8.8)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied TXS 9A 1 2
    +----------------+-----------------------+---------+---------+----------+

    TYA TYA Transfer index Y to accumulator TYA

    Operation: Y -> A N Z C I D V

    / / _ _ _ _ (Ref: 7.14)

    +----------------+-----------------------+---------+---------+----------+

    Addressing Mode Assembly Language Form OP CODE No. Bytes No. Cycles
    +----------------+-----------------------+---------+---------+----------+
    Implied TYA 98 1 2
    +----------------+-----------------------+---------+---------+----------+

    +------------------------------------------------------------------------ | INSTRUCTION ADDRESSING MODES AND RELATED EXECUTION TIMES | (in clock cycles) +------------------------------------------------------------------------

    A A A B B B B B B B B B B C D N S C C E I M N P R V V L C D L C S Q T I E L K C S C

    Accumulator | . . 2 . . . . . . . . . . . Immediate | 2 2 . . . . . . . . . . . Zero Page | 3 3 5 . . . 3 . . . . . . . Zero Page,X | 4 4 6 . . . . . . . . . . . Zero Page,Y | . . . . . . . . . . . . . . Absolute | 4 4 6 . . . 4 . . . . . . . Absolute,X | 4* 4* 7 . . . . . . . . . . . Absolute,Y | 4* 4* . . . . . . . . . . . . Implied | . . . . . . . . . . . . . 2 Relative | . . . 2** 2** 2** . 2** 2** 2** 7 2** 2** . (Indirect,X) | 6 6 . . . . . . . . . . . . (Indirect),Y | 5* 5* . . . . . . . . . . . . Abs. Indirect| . . . . . . . . . . . . . .

    +----------------------------------------------------------- C C C C C C D D D E I I I J L L L M P P E E E O N N N M D I V P X Y C X Y R C X Y P

    Accumulator | . . . . . . . . . . . . . . Immediate | . . . 2 2 2 . . . 2 . . . . Zero Page | . . . 3 3 3 5 . . 3 5 . . . Zero Page,X | . . . 4 . . 6 . . 4 6 . . . Zero Page,Y | . . . . . . . . . . . . . . Absolute | . . . 4 4 4 6 . . 4 6 . . 3 Absolute,X | . . . 4* . . 7 . . 4* 7 . . . Absolute,Y | . . . 4* . . . . . 4* . . . . Implied | 2 2 2 . . . . 2 2 . . 2 2 . Relative | . . . . . . . . . . . . . . (Indirect,X) | . . . 6 . . . . . 6 . . . . (Indirect),Y | . . . 5* . . . . . 5* . . . . Abs. Indirect| . . . . . . . . . . . . . 5

    +-----------------------------------------------------------
    • Add one cycle if indexing across page boundary ** Add one cycle if branch is taken, Add one additional if branching operation crosses page boundary

    ------------------------------------------------------------------------+

    INSTRUCTION ADDRESSING MODES AND RELATED EXECUTION TIMES | (in clock cycles) |

    ------------------------------------------------------------------------+

    J L L L L N O P P P P R R R S D D D S O R H H L L O O T R A X Y R P A A P A P L R I

    Accumulator | . . . . 2 . . . . . . 2 2 . Immediate | . 2 2 2 . . 2 . . . . . . . Zero Page | . 3 3 3 5 . 3 . . . . 5 5 . Zero Page,X | . 4 . 4 6 . 4 . . . . 6 6 . Zero Page,Y | . . 4 . . . . . . . . . . . Absolute | 6 4 4 4 6 . 4 . . . . 6 6 . Absolute,X | . 4* . 4* 7 . 4* . . . . 7 7 . Absolute,Y | . 4* 4* . . . 4* . . . . . . . Implied | . . . . . 2 . 3 3 4 4 . . 6 Relative | . . . . . . . . . . . . . . (Indirect,X) | . 6 . . . . 6 . . . . . . . (Indirect),Y | . 5* . . . . 5* . . . . . . . Abs. Indirect| . . . . . . . . . . . . . .

    +----------------------------------------------------------- R S S S S S S S T T T T T T T B E E E T T T A A S X X Y S C C D I A X Y X Y X A S A

    Accumulator | . . . . . . . . . . . . . . Immediate | . 2 . . . . . . . . . . . . Zero Page | . 3 . . . 3 3 3 . . . . . . Zero Page,X | . 4 . . . 4 . 4 . . . . . . Zero Page,Y | . . . . . . 4 . . . . . . . Absolute | . 4 . . . 4 4 4 . . . . . . Absolute,X | . 4* . . . 5 . . . . . . . . Absolute,Y | . 4* . . . 5 . . . . . . . . Implied | 6 . 2 2 2 . . . 2 2 2 2 2 2 Relative | . . . . . . . . . . . . . . (Indirect,X) | . 6 . . . 6 . . . . . . . . (Indirect),Y | . 5* . . . 6 . . . . . . . . Abs. Indirect| . . . . . . . . . . . . . .

    +-----------------------------------------------------------
    • Add one cycle if indexing across page boundary ** Add one cycle if branch is taken, Add one additional if branching operation crosses page boundary
    00 - BRK 20 - JSR 01 - ORA - (Indirect,X) 21 - AND - (Indirect,X) 02 - Future Expansion 22 - Future Expansion 03 - Future Expansion 23 - Future Expansion 04 - Future Expansion 24 - BIT - Zero Page 05 - ORA - Zero Page 25 - AND - Zero Page 06 - ASL - Zero Page 26 - ROL - Zero Page 07 - Future Expansion 27 - Future Expansion 08 - PHP 28 - PLP 09 - ORA - Immediate 29 - AND - Immediate 0A - ASL - Accumulator 2A - ROL - Accumulator 0B - Future Expansion 2B - Future Expansion 0C - Future Expansion 2C - BIT - Absolute 0D - ORA - Absolute 2D - AND - Absolute 0E - ASL - Absolute 2E - ROL - Absolute 0F - Future Expansion 2F - Future Expansion 10 - BPL 30 - BMI 11 - ORA - (Indirect),Y 31 - AND - (Indirect),Y 12 - Future Expansion 32 - Future Expansion 13 - Future Expansion 33 - Future Expansion 14 - Future Expansion 34 - Future Expansion 15 - ORA - Zero Page,X 35 - AND - Zero Page,X 16 - ASL - Zero Page,X 36 - ROL - Zero Page,X 17 - Future Expansion 37 - Future Expansion 18 - CLC 38 - SEC 19 - ORA - Absolute,Y 39 - AND - Absolute,Y 1A - Future Expansion 3A - Future Expansion 1B - Future Expansion 3B - Future Expansion 1C - Future Expansion 3C - Future Expansion 1D - ORA - Absolute,X 3D - AND - Absolute,X 1E - ASL - Absolute,X 3E - ROL - Absolute,X 1F - Future Expansion 3F - Future Expansion
    40 - RTI 60 - RTS 41 - EOR - (Indirect,X) 61 - ADC - (Indirect,X) 42 - Future Expansion 62 - Future Expansion 43 - Future Expansion 63 - Future Expansion 44 - Future Expansion 64 - Future Expansion 45 - EOR - Zero Page 65 - ADC - Zero Page 46 - LSR - Zero Page 66 - ROR - Zero Page 47 - Future Expansion 67 - Future Expansion 48 - PHA 68 - PLA 49 - EOR - Immediate 69 - ADC - Immediate 4A - LSR - Accumulator 6A - ROR - Accumulator 4B - Future Expansion 6B - Future Expansion 4C - JMP - Absolute 6C - JMP - Indirect 4D - EOR - Absolute 6D - ADC - Absolute 4E - LSR - Absolute 6E - ROR - Absolute 4F - Future Expansion 6F - Future Expansion 50 - BVC 70 - BVS 51 - EOR - (Indirect),Y 71 - ADC - (Indirect),Y 52 - Future Expansion 72 - Future Expansion 53 - Future Expansion 73 - Future Expansion 54 - Future Expansion 74 - Future Expansion 55 - EOR - Zero Page,X 75 - ADC - Zero Page,X 56 - LSR - Zero Page,X 76 - ROR - Zero Page,X 57 - Future Expansion 77 - Future Expansion 58 - CLI 78 - SEI 59 - EOR - Absolute,Y 79 - ADC - Absolute,Y 5A - Future Expansion 7A - Future Expansion 5B - Future Expansion 7B - Future Expansion 5C - Future Expansion 7C - Future Expansion 50 - EOR - Absolute,X 70 - ADC - Absolute,X 5E - LSR - Absolute,X 7E - ROR - Absolute,X 5F - Future Expansion 7F - Future Expansion
    80 - Future Expansion A0 - LDY - Immediate 81 - STA - (Indirect,X) A1 - LDA - (Indirect,X) 82 - Future Expansion A2 - LDX - Immediate 83 - Future Expansion A3 - Future Expansion 84 - STY - Zero Page A4 - LDY - Zero Page 85 - STA - Zero Page A5 - LDA - Zero Page 86 - STX - Zero Page A6 - LDX - Zero Page 87 - Future Expansion A7 - Future Expansion 88 - DEY A8 - TAY 89 - Future Expansion A9 - LDA - Immediate 8A - TXA AA - TAX 8B - Future Expansion AB - Future Expansion 8C - STY - Absolute AC - LDY - Absolute 80 - STA - Absolute AD - LDA - Absolute 8E - STX - Absolute AE - LDX - Absolute 8F - Future Expansion AF - Future Expansion 90 - BCC B0 - BCS 91 - STA - (Indirect),Y B1 - LDA - (Indirect),Y 92 - Future Expansion B2 - Future Expansion 93 - Future Expansion B3 - Future Expansion 94 - STY - Zero Page,X B4 - LDY - Zero Page,X 95 - STA - Zero Page,X BS - LDA - Zero Page,X 96 - STX - Zero Page,Y B6 - LDX - Zero Page,Y 97 - Future Expansion B7 - Future Expansion 98 - TYA B8 - CLV 99 - STA - Absolute,Y B9 - LDA - Absolute,Y 9A - TXS BA - TSX 9B - Future Expansion BB - Future Expansion 9C - Future Expansion BC - LDY - Absolute,X 90 - STA - Absolute,X BD - LDA - Absolute,X 9E - Future Expansion BE - LDX - Absolute,Y 9F - Future Expansion BF - Future Expansion
    C0 - Cpy - Immediate E0 - CPX - Immediate C1 - CMP - (Indirect,X) E1 - SBC - (Indirect,X) C2 - Future Expansion E2 - Future Expansion C3 - Future Expansion E3 - Future Expansion C4 - CPY - Zero Page E4 - CPX - Zero Page C5 - CMP - Zero Page E5 - SBC - Zero Page C6 - DEC - Zero Page E6 - INC - Zero Page C7 - Future Expansion E7 - Future Expansion C8 - INY E8 - INX C9 - CMP - Immediate E9 - SBC - Immediate CA - DEX EA - NOP CB - Future Expansion EB - Future Expansion CC - CPY - Absolute EC - CPX - Absolute CD - CMP - Absolute ED - SBC - Absolute CE - DEC - Absolute EE - INC - Absolute CF - Future Expansion EF - Future Expansion D0 - BNE F0 - BEQ D1 - CMP (Indirect@,Y F1 - SBC - (Indirect),Y D2 - Future Expansion F2 - Future Expansion D3 - Future Expansion F3 - Future Expansion D4 - Future Expansion F4 - Future Expansion D5 - CMP - Zero Page,X F5 - SBC - Zero Page,X D6 - DEC - Zero Page,X F6 - INC - Zero Page,X D7 - Future Expansion F7 - Future Expansion D8 - CLD F8 - SED D9 - CMP - Absolute,Y F9 - SBC - Absolute,Y DA - Future Expansion FA - Future Expansion DB - Future Expansion FB - Future Expansion DC - Future Expansion FC - Future Expansion DD - CMP - Absolute,X FD - SBC - Absolute,X DE - DEC - Absolute,X FE - INC - Absolute,X DF - Future Expansion FF - Future Expansion

    INSTRUCTION OPERATION

    The following code has been taken from VICE for the purposes of showing how each instruction operates. No particular addressing mode is used since we only wish to see the operation of the instruction itself.

    src : the byte of data that is being addressed. SET_SIGN : sets/resets the sign flag depending on bit 7. SET_ZERO : sets/resets the zero flag depending on whether the result is zero or not. SET_CARRY(condition) : if the condition has a non-zero value then the carry flag is set, else it is reset. SET_OVERFLOW(condition) : if the condition is true then the overflow flag is set, else it is reset. SET_INTERRUPT : } SET_BREAK : } As for SET_CARRY and SET_OVERFLOW. SET_DECIMAL : } REL_ADDR(PC, src) : returns the relative address obtained by adding the displacement src to the PC. SET_SR : set the Program Status Register to the value given. GET_SR : get the value of the Program Status Register. PULL : Pull a byte off the stack. PUSH : Push a byte onto the stack. LOAD : Get a byte from the memory address. STORE : Store a byte in a memory address. IF_CARRY, IF_OVERFLOW, IF_SIGN, IF_ZERO etc : Returns true if the relevant flag is set, otherwise returns false. clk : the number of cycles an instruction takes. This is shown below in situations where the number of cycles changes depending on the result of the instruction (eg. Branching instructions).
    AC = Accumulator XR = X register YR = Y register PC = Program Counter SP = Stack Pointer

    /* ADC */

    unsigned int temp = src + AC + (IF_CARRY() ? 1 : 0); SET_ZERO(temp & 0xff); /* This is not valid in decimal mode */ if (IF_DECIMAL()) { if (((AC & 0xf) + (src & 0xf) + (IF_CARRY() ? 1 : 0)) > 9) temp += 6;

    SET_SIGN(temp); SET_OVERFLOW(!((AC src) & 0x80) && ((AC temp) & 0x80)); if (temp > 0x99) temp += 96; SET_CARRY(temp > 0x99);

    } else {

    SET_SIGN(temp); SET_OVERFLOW(!((AC src) & 0x80) && ((AC temp) & 0x80)); SET_CARRY(temp > 0xff);

    } AC = ((BYTE) temp);

    /* AND */

    src &= AC; SET_SIGN(src); SET_ZERO(src); AC = src;

    /* ASL */

    SET_CARRY(src & 0x80); src <<= 1; src &= 0xff; SET_SIGN(src); SET_ZERO(src); STORE src in memory or accumulator depending on addressing mode.

    /* BCC */

    if (!IF_CARRY()) {

    clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1); PC = REL_ADDR(PC, src);

    }

    /* BCS */

    if (IF_CARRY()) {

    clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1); PC = REL_ADDR(PC, src);

    }

    /* BEQ */

    if (IF_ZERO()) {

    clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1); PC = REL_ADDR(PC, src);

    }

    /* BIT */

    SET_SIGN(src); SET_OVERFLOW(0x40 & src); /* Copy bit 6 to OVERFLOW flag. */ SET_ZERO(src & AC);

    /* BMI */

    if (IF_SIGN()) {

    clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1); PC = REL_ADDR(PC, src);

    }

    /* BNE */

    if (!IF_ZERO()) {

    clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1); PC = REL_ADDR(PC, src);

    }

    /* BPL */

    if (!IF_SIGN()) {

    clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1); PC = REL_ADDR(PC, src);

    }

    /* BRK */

    PC++; PUSH((PC >> 8) & 0xff); /* Push return address onto the stack. */ PUSH(PC & 0xff); SET_BREAK((1)); /* Set BFlag before pushing */ PUSH(SR); SET_INTERRUPT((1)); PC = (LOAD(0xFFFE) | (LOAD(0xFFFF) << 8));

    /* BVC */

    if (!IF_OVERFLOW()) {

    clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1); PC = REL_ADDR(PC, src);

    }

    /* BVS */

    if (IF_OVERFLOW()) {

    clk += ((PC & 0xFF00) != (REL_ADDR(PC, src) & 0xFF00) ? 2 : 1); PC = REL_ADDR(PC, src);

    }

    /* CLC */

    SET_CARRY((0));

    /* CLD */

    SET_DECIMAL((0));

    /* CLI */

    SET_INTERRUPT((0));

    /* CLV */

    SET_OVERFLOW((0));

    /* CMP */

    src = AC - src; SET_CARRY(src < 0x100); SET_SIGN(src); SET_ZERO(src &= 0xff);

    /* CPX */

    src = XR - src; SET_CARRY(src < 0x100); SET_SIGN(src); SET_ZERO(src &= 0xff);

    /* CPY */

    src = YR - src; SET_CARRY(src < 0x100); SET_SIGN(src); SET_ZERO(src &= 0xff);

    /* DEC */

    src = (src - 1) & 0xff; SET_SIGN(src); SET_ZERO(src); STORE(address, (src));

    /* DEX */

    unsigned src = XR; src = (src - 1) & 0xff; SET_SIGN(src); SET_ZERO(src); XR = (src);

    /* DEY */

    unsigned src = YR; src = (src - 1) & 0xff; SET_SIGN(src); SET_ZERO(src); YR = (src);

    /* EOR */

    src ^= AC; SET_SIGN(src); SET_ZERO(src); AC = src;

    /* INC */

    src = (src + 1) & 0xff; SET_SIGN(src); SET_ZERO(src); STORE(address, (src));

    /* INX */

    unsigned src = XR; src = (src + 1) & 0xff; SET_SIGN(src); SET_ZERO(src); XR = (src);

    /* INY */

    unsigned src = YR; src = (src + 1) & 0xff; SET_SIGN(src); SET_ZERO(src); YR = (src);

    /* JMP */

    PC = (src);

    /* JSR */

    PC--; PUSH((PC >> 8) & 0xff); /* Push return address onto the stack. */ PUSH(PC & 0xff); PC = (src);

    /* LDA */

    SET_SIGN(src); SET_ZERO(src); AC = (src);

    /* LDX */

    SET_SIGN(src); SET_ZERO(src); XR = (src);

    /* LDY */

    SET_SIGN(src); SET_ZERO(src); YR = (src);

    /* LSR */

    SET_CARRY(src & 0x01); src >>= 1; SET_SIGN(src); SET_ZERO(src); STORE src in memory or accumulator depending on addressing mode.

    /* NOP */

    Nothing.

    /* ORA */

    src |= AC; SET_SIGN(src); SET_ZERO(src); AC = src;

    /* PHA */

    src = AC; PUSH(src);

    /* PHP */

    src = GET_SR; PUSH(src);

    /* PLA */

    src = PULL(); SET_SIGN(src); /* Change sign and zero flag accordingly. */ SET_ZERO(src);

    /* PLP */

    src = PULL(); SET_SR((src));

    /* ROL */

    src <<= 1; if (IF_CARRY()) src |= 0x1; SET_CARRY(src > 0xff); src &= 0xff; SET_SIGN(src); SET_ZERO(src); STORE src in memory or accumulator depending on addressing mode.

    /* ROR */

    if (IF_CARRY()) src |= 0x100; SET_CARRY(src & 0x01); src >>= 1; SET_SIGN(src); SET_ZERO(src); STORE src in memory or accumulator depending on addressing mode.

    /* RTI */

    src = PULL(); SET_SR(src); src = PULL(); src |= (PULL() << 8); /* Load return address from stack. */ PC = (src);

    /* RTS */

    src = PULL(); src += ((PULL()) << 8) + 1; /* Load return address from stack and add 1. */ PC = (src);

    /* SBC */

    unsigned int temp = AC - src - (IF_CARRY() ? 0 : 1); SET_SIGN(temp); SET_ZERO(temp & 0xff); /* Sign and Zero are invalid in decimal mode */ SET_OVERFLOW(((AC temp) & 0x80) && ((AC src) & 0x80)); if (IF_DECIMAL()) {

    if ( ((AC & 0xf) - (IF_CARRY() ? 0 : 1)) < (src & 0xf)) /* EP */ temp -= 6; if (temp > 0x99) temp -= 0x60;

    } SET_CARRY(temp < 0x100); AC = (temp & 0xff);

    /* SEC */

    SET_CARRY((1));

    /* SED */

    SET_DECIMAL((1));

    /* SEI */

    SET_INTERRUPT((1));

    /* STA */

    STORE(address, (src));

    /* STX */

    STORE(address, (src));

    /* STY */

    STORE(address, (src));

    /* TAX */

    unsigned src = AC; SET_SIGN(src); SET_ZERO(src); XR = (src);

    /* TAY */

    unsigned src = AC; SET_SIGN(src); SET_ZERO(src); YR = (src);

    /* TSX */

    unsigned src = SP; SET_SIGN(src); SET_ZERO(src); XR = (src);

    /* TXA */

    unsigned src = XR; SET_SIGN(src); SET_ZERO(src); AC = (src);

    /* TXS */

    unsigned src = XR; SP = (src);

    /* TYA */

    unsigned src = YR; SET_SIGN(src); SET_ZERO(src); AC = (src);
    作者:RockCarry工作室 陈凯 2005.2.10 版权所有 如有转载请注明出处